Drinking Water

Why People Test Their Water?

Why_Test_Water.png

There are limitless reasons why people test their drinking water. Whether you want to find the cause of an unusual color or smell, to choose an appropriate water treatment system, or are simply curious about what flows from your tap–beginning the process can be daunting. There are a myriad of testing options across a range of price points, which can make you wonder: what’s the right choice?

We, at Tap Score, are here to give you the inside scoop about when DIY kits are the right choice and when laboratory testing is the way to go.

Why You Might Want to Test Your Water

Changes in Water Color

People often start thinking about testing their water when they notice a visible change in water quality. For example, if your water has turned a strange color. When you’re used to seeing crystal clear water flowing from the faucet, yellow or brown water can certainly be alarming. The good news is that most of the time discolored water does not pose a significant health risk. For details about common causes of discolored water, what it could mean for your health, and ways to fix it take a look at the following articles:

  1. Why Is My Water Yellow?

  2. Why is My Water Brown? (or reddish brown)

Once you’ve gathered some handy Tips for Taps, we still recommend that you investigate changes in your water quality.

There are several different options when it comes to finding the source of the problem. There are both DIY kits and laboratory testing options. As you might have guessed, these two options have different capacities. DIY kits do not typically have detection limits as low as laboratory testing; they can usually provide an indicator of presence or absence as opposed to an accurate concentration at low levels.

For yellow or brown water, a good first step is our Iron-oxidizing Bacteria DIY test. However, changes in water color can happen for a variety of other reasons, and laboratory testing may give you a more complete picture. Take a look at our Yellow Tap Water testing package.

Changes in Water Smell  

Whether it smells like rotten eggs or chlorine, odd smelling water is another instance where at-home testing may be a good first step.

A few good options to help identify causes of smelly water include:

For Chlorine or Bleach-Like Smell: Chlorine Strips are a great way to get an idea of how much chlorine is in your water. Because laboratory testing for chlorine has specific preservation requirements due to its volatile nature, it can be quite expensive. Testing directly at the tap is a much more affordable route, that will give you a good sense of how much Total and Free Chlorine are in your water.

For Rotten Egg Smell: Rotten egg smell is most often attributed to sulfur. Tap Score’s Hydrogen Sulfide Bacteria DIY test can help determine if this is the culprit.

However, if you are looking for more thorough answers (as well a treatment recommendations), our our TapScore home water testing packages will help. Our national team of certified laboratory scientists, engineers, and health experts provide each customer with a personalized Tap Score Water Quality Report.

Before Installing A Water Treatment System:

This is an instance of when we strongly recommend laboratory testing. Treatment systems come in a variety of shapes, sizes, and prices–and before you take the plunge, you should ask yourself: what problem needs treating? Because treatment systems can be targeted towards filtering specific contaminants, how do you know the right system to choose if you don’t know what’s actually in your water?

Filtration units can set you back thousands of dollars (depending on the unit), so you want to be sure that you’re not paying for something you don’t need.

Our Tap Score testing packages will give you a great sense of your overall water quality, allowing you to make an informed decision. With every water quality report, we provide a personalized and unbiased list of treatment options certified by NSF and WQA.

Local Water Quality Issues:

From hurricanes to wildfires to floods–natural disasters can disrupt water quality for months. Immediate danger does not subside once fires are extinguished or flood levels recede. Contaminants can find their way into drinking water supplies–leading to a multitude of health and safety risks. Whether it’s mold, bacteria, or any other contaminant–this is a good time forlaboratory testing, as it will help keep you and your family safe.

Concerns About Infrastructure:

It’s no secret that american infrastructure is failing. In fact, the 2017 Infrastructure Report Card by the  American Society of Civil Engineers (ASCE) granted U.S water infrastructure a measly “D” (on an A through F scale).  This comprehensive assessment of the nation’s 16 major infrastructure categories evaluates their current state and indicates that  the U.S. must invest approximately $3.6 trillion in overall infrastructure repairs and improvements by 2020 to reach acceptable standards. Unfortunately, there is no timetable for if this will happen.

Additionally, if you live in a house built prior to 1986, laboratory testing is a wise investment. It is also important to note that  lead is legal in many fixtures and pipes and even though the concentrations are lower post 1986, the water quality could lead to leaching. We, at Tap Score, recommend our Essential City Water test if you live in an older home or you are served by old infrastructure.

New Baby, New Concerns

Having a baby is an exciting time, but it brings with it a whole new set of safety concerns. Young children are considered the most vulnerable population group. Children typically drink more water per pound of body weight than adults. This leads greater exposure and subsequently, greater risk. Because their bodies are still developing, toxic chemicals cause more harm to growing tissue.

A common concern for parents with a new baby is too much nitrate–leading to methemoglobinemia (also known as blue baby syndrome). If you have young children in your home, laboratory testing a sure-fire way to know if they are at risk. Read more on our post about Taps for Tots.

Perhaps You’re Just Curious

With knowledge comes power–the power to make informed decisions and to help keep you safe. Laboratory testing is a great way to get a sense of your water’s overall chemistry. Many contaminants–such as lead and arsenic–may be lurking in your water that you can’t smell, taste or see. Home DIY kits and home test trips fall short. Our water testing packages can test for hundreds of contaminants that you didn’t even know were putting you at risk!

Beware of the Free Lab Water test!

If you are interested in water testing, we can’t emphasize enough that you should stay away from “free” water tests. Don’t be fooled–”free” water testing is a scam. Remember the adage, “if it seems too good to be true, it probably is.” If someone is offering you a free water test, be very suspicious, as it is highly likely that these are the same people trying to sell expensive (and perhaps unnecessary) water treatment products or bottled water subscription.

A Final Word on Water Testing:

Whether you want to investigate a change in water quality or if you are just curious about what flows from your tap–testing your water is the way to go. While some instance are suitable for testing at home (such as testing for chlorine), most of the time, laboratory testing is the smart choice. For more information about any of our laboratory test packages, send us a message at hello@simplewater.us and our team of chemists, engineers, and treatment experts will be standing by!


Sources:

http://www.ewg.org/enviroblog/2016/03/five-reasons-your-tap-water-changed-color#.Wcwy8NOGMyk

http://www.excellenceforchildandyouth.ca/sites/default/files/gai_attach/ECBG-898_Final_Outcomes_Report.pdf

http://www.asce.org/

https://www.infrastructurereportcard.org/

https://www.infrastructurereportcard.org/cat-item/drinking-water/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1071541/

What is Reverse Osmosis (RO)?

Reverse Osmosis is an advanced water filtration technique, but is it for you?

RO-Title_1024x1024.png

Finally! A detailed explanation for the type of water filtration you’ve probably heard most about, and for a good reason–reverse osmosis (RO) treats more contaminants than almost any other filter.

RO can filter out contaminants like arsenic, bacteria, lead, and fluoride. This makes it a popular treatment technology in water systems, but also at home. RO systems range from under-the-sink to point of entry (POE) installations treating the whole home’s water.

If you already have an RO and are trying to diagnose a leak or a problem with your system, hop over to our handy problem-identification guide about RO system leaks. For newcomers or interested-RO owners, Tap Score created this guide to explain how reverse osmosis works, which contaminants it does and does not remove, and what some of the pros and cons of an RO system are.

How does Reverse Osmosis Work?

Osmosis occurs in the natural world and is essential to many plants and animals’ life processes (an example being when plants absorb water from soil). During osmosis, water moves across a semipermeable membrane from an area with a low concentration of dissolved particles to an area with a high concentration of dissolved particles. A semipermeable membrane is a material that lets some atoms or molecules through while stopping others–similar to a screen door letting in air but keeping bugs out. This flow leads to an equal concentration of particles in water on either side of the semipermeable membrane.

Reverse osmosis, on the other hand, does not occur in nature. It requires added energy in the form of pressure to force water to move from an area of high concentration of particles to an area of lowconcentration of particles.

RO_large.jpg

The effect is to concentrate contaminants on one side of the semipermeable membrane (the waste stream) and produce freshwater for drinking on the other side (fresh water product).

What does an RO System Include?

Reverse osmosis itself only includes the passage of water through a semipermeable membrane. However, RO systems always contain additional pre-treatment filters and often post-treatment filters. These extra filters are referred to as “stages”. For example, if you see an RO system advertised as a 5-stage system, that means water passes through 5 stages of filtration before arriving at your faucet.

RO_system_1024x1024.png

Pre-treatment

Semi-permeable membranes are very sensitive–this means they are easily damaged if water is not properly treated before reaching the membrane. There are multiple kinds of pretreatment filters that water must pass through to prevent foulingscaling, and premature RO membrane failure:

  • Multimedia filtration/microfiltration is used to filter out sediment particles such as sand, clay, and plant matter/microorganisms. If these particles are not filtered out, they can cause fouling–they accumulate on the RO membrane and plug it up. 
  • Granular activated carbon (GAC) removes organic contaminants and disinfectants in the water such as chlorine or chloramines. Chlorine and chloramines are oxidizers and can react with the RO membrane and “burn” holes in it. 
  • Antiscalants/scale inhibitors are chemicals added to water to prevent scaling on the RO membrane. Scaling happens when dissolved compound concentrations exceed their solubility limits and precipitate out of the water and onto the membrane. A common example is calcium carbonate, or CaCO3, which occurs frequently if you have hard water. 

If pre-treatment is not used or maintained properly, fouling and scaling can decrease water flow across the membrane and decrease water quality.

Post-treatment

Post treatment can include an additional GAC filter to remove any last organic contaminants that still remain, remineralization/alkaline treatment, or UV treatment for bacteria.

What Does Reverse Osmosis Remove from My Drinking Water?

RO can treat inorganic contaminants such as (but not limited to):Arsenic

  • Asbestos
  • Nitrates & sulfates
  • Lead, aluminum, copper, nickel
  • Dissolved solids/salts

However, because all RO systems also contain carbon and sediment pre-filters, they can also filter some pesticides, algae, some bacteria & viruses, and other organic contaminants. (For a full list of RO treated contaminants click here).

Reverse osmosis does not remove molecules smaller than 0.0001 micrometers or molecules that are nonpolar, such as dissolved gases. Specifically, it does not catch:

  • Some pesticides/herbicides (1,2,4-trichlorobenzene, 2,4-D and Atrazine)
  • Some ions & metals (chlorine, radon)
  • Organic chemicals that weigh less than water (Benzene, Carbon tetrachloride, Dichlorobenzene, Toluene and Trihalomethanes (THMs))

Though some of these small particles may be caught by the carbon pre-filters, it is not guaranteed.

Common Complications Using Reverse Osmosis

There are a number of downsides to using reverse osmosis, including:

  • Increased water usage: Only 20-30% of the source water is discharged as clean water while 70-80% is discharged as more concentrated wastewater, so your water usage and bill will most likely go up.
  • Lot of upkeep: You must be very diligent about changing all of the pre-treatment filters on time–if chlorine is in your water and breaks through, you may cause permanent damage. RO membranes must also be sent away and cleaned by a serving company 1-4 times per year.
  • Difficult installation: A hole must be drilled in your home’s main drain pipe for the wastewater line, and in the countertop/sink for the faucet.
  • Water pressure: RO systems can decrease water pressure throughout your house.
  • Limited under sink space: Storage tank for treated water can take up under sink storage.
  • Can remove too much: Reverse osmosis can filter out good minerals from water such as ion and manganese. 

The Ultimate Question: Is a Reverse Osmosis System Right for Me?

If you have a problem with inorganic contaminants such as arsenic, fluoride, or nitrates, or if you have a high total dissolved solid (TDS) count, RO is likely a great option for you. If you have multiple water quality issues that include both organic and inorganic contaminants, reverse osmosis is a good option that will cover all your bases.

It is important, however, for you to know your water’s full chemical profile before installing a reverse osmosis system. Why should you test before you treat with RO? RO is expensive and time consuming–so you’ll want to make sure this is the right choice. Further, membranes can be damaged by certain contaminants present in your water, so knowing what type of pretreatment you need is essential, just like Tap Score’s Essential Water Test.

Have more questions? Feel free to email us at contact@simplewater.us!

Is My Water Radioactive?

No, we’re not asking if your water is turning you into a monster...radioactivity in water is a real threat.

RadioactiveWater-Title_1024x1024.png

Radioactivity is not scary in the way that movies and popular culture depict. Sadly, it is much stealthier–it can cause irreparable damage to your body that stays hidden for years, or even across generations.

We are exposed to natural radiation in our daily lives (an example being bananas!). Radioactive particles, or radionuclides, are a part of the natural world–they exist in plants and animals usually as potassium-40 or radium-226. However, increased exposures to radiation occurs in our water or air when nuclear power plants, mining operations, or laboratories release radioactive materials into the environment.

Tap Score has written this guide to help you understand what radiation really is, what the associated risks are, and what types of radioactive elements are common in drinking water, and how they should be treated.

Getting the Terms Right: What Are Radioactive Particles?

Radiation refers to any process that emits energy in the form of electromagnetic waves or particles, such as light or sound. When we talk about radioactive particles, we are specifically referring to ionizing radiation. Ionizing radiation is radiation that causes an atom or molecule to lose electrons and become charged–this charged molecule is called an ion.

Radioactivity is “the act of emitting radiation spontaneously”. An atom can be radioactive when it is unstable and wants to dissipate some of its energy to reach a more stable form.

The different “forms” of stable or unstable radioactive elements are called isotopes. We distinguish these radioactive isotopes by their mass, which is attached to the end of the element name, like Uranium-238.

Radioactive Particles in Water are Alpha or Beta

Radioactive particles are present in rocks and soil, which usually serve as the path to enter groundwater. The two types of radioactive particles present in water are alpha and beta particles–which are present in different sizes and element types.

Alpha particles consist of two protons and two neutrons. Common examples in water are radium-226, radon-222, uranium-238, polonium-210, lead-206. While alpha particles cannot penetrate skin from the outside, they are active in the body and can cause damage if consumed.

Beta particles are radioactive particles made up of one electron. Common examples in water are strontium-90, potassium-40. Beta particles can penetrate the top layer of skin and cause burns. Beta particles likely cause more damage inside the body than alpha particles–they have more energy and can therefore travel farther into body tissue than alpha particles can.

Radioactive Particles in Water

We are concerned about naturally occurring radiation and additional radioactive particles that enter water from rock formations near mining sites, nuclear power plants, or laboratories. Radon, in particular, occurs in gaseous form in soils and can dissolve into groundwater or enter homes as a gas through the basement. Exposures to radon in both air and water are seriously concerning–here, we focus on exposure through drinking water.

Prevalence of Radioactive Particles: Private Wells at Higher Risk

The Environmental Protection Agency (EPA) sets standards for radionuclides in city treated drinking water, but if you are a well water user you are at a much higher risk for radioactive contamination. In a study conducted by the United States Geological Survey (USGS) on radioactive particles in well water, the most abundant element above the EPA health threshold was radon, appearing in 65% of wells. Uranium was present in only 4% of the wells– which makes sense because radon is produced as uranium decays.

Signs that You Have Radioactive Particles in Your Water

Unfortunately, there are no obvious signs of radioactive particles. The only way to identify radon and uranium in your water is through testing. As a company that tests water, we’ve made this pretty easy–our essential test and advanced well water tests include uranium testing, we offer a specific test for radon, and we’ve developed a full radiation test that measures Gross Alpha and Gross Beta particles.

How do radioactive elements in water affect my health?

Unfortunately, the effects from radioactive particles in water can cause cancer and even be fatal. While our skin can protect us against alpha particles in the environment, exposure to radiation through water is particularly dangerous because radioactive elements damage tissues and organs.

Radioactive particles cause damage by breaking chemical bonds essential to our body’s functioning. Changing bonds in a molecule drastically alters its ability to function. Radioactive particles can cause cells in our body to die or slow down their reproduction. If a group of cells crucial to bodily function dies, the effects can be fatal.

After the bonds of normal cells in the body are broken, they release electrons. This can create a chain reaction that can eventually impact DNA molecules. Mutations are consequent to DNA damage, which lead to cancer. And, if germ (sex) cells are mutated, the cancer can be transmitted to children long after the initial exposure. The results of a study done in Iowa show that towns with radium-226 present in their water supply had higher rates of lung, bladder, and breast cancer.

How to protect yourself from Radioactive Particles in Water

Treatment

There are two primary treatment options for radioactive particles in water–carbon filters and ion exchange:

  • Carbon filters are one option for removing radium and strontium from drinking water. However, if radon is also present the filter must be changed very frequently–carbon can adsorb radon and lead to higher radiation exposure if radon is left to build up. As radon particles accumulate, they may fall out of the filter and back into the water stream.
  • Ion exchange can be used to treat uranium. However, ion exchange creates backwash that contains high concentrations of radionuclides, which makes disposal a concern.

Ultimately, the type of treatment you choose depends on what type of radiation problem you have.

Test Before You Treat

Though these health effects may be frightening, they can be prevented or at least mitigated.  Tap Score offers a Full Radiation Water Test to measures alpha and beta particles as well as a specific Radon Test to help you determine if you are at risk. We’ll also help you choose the right treatment options if you discover a problem. Picking the right filter matters to ensure you properly treat your water.

Have more questions? Feel free to email us at hello@simplewater.us! 

Sources: 

https://ehss.energy.gov/ohre/roadmap/achre/intro_9.html

https://academic.oup.com/aje/article/116/6/924/189051

https://www.wqpmag.com/radiation-water

https://www.epa.gov/dwreginfo/radionuclides-rule

https://www.circleofblue.org/2011/world/water-testing-reveals-trace-elements-exceed-health-standards-in-20-percent-of-wells/

The Truth About Hydration

Staying_hydrated_1024x1024.png

Summer is just around the corner, and as you start to plan all your fun activities and adventures, remember to include the most important ingredient for success: water!

And no, we don’t mean the ocean or that beautiful waterfall on your favorite hike. We mean drinking water! People tend to become dehydrated more often during the summer months, as they are outside in the warm weather and tend to perspire more while forgetting to drink water.

Why is it important to stay hydrated?

Water is critical to human survival, and when our bodies are deprived of it even a little bit, we see immediate effects. Losing as little as 1-2% of your body water can impair cognitive performance.

If your body is dehydrated, your heart and muscles have to work harder, which may be problematic for the elderly or for people with heart conditions. As you get older, your body doesn’t sense thirst as readily either, which is why the elderly should be especially attentive to their water intake.

How do I know if I’m dehydrated?

If you’re thirsty, you’re actually already dehydrated. Thirst, however, is more of an immediate response to dehydration. Some effects of long term dehydration include:

  • Headaches
  • Lack of energy
  • Weight gain
  • Lack of cleansing/detoxification within the body
  • Weakened immune system (getting colds & flus easily)
  • Feeling lethargic or experiencing brain fog

One of the best ways to check if you’re dehydrated throughout the day is to observe the color of your urine. If it is clear or light colored, you’ve been drinking enough water. If your urine is dark colored, you better be walking straight from the bathroom to the kitchen for a glass of water!

What is the best way to stay hydrated?

First and foremost, drink water regularly. A few more tips include:

  • Eating lots of fruits & vegetables: Not only do fruits and vegetables contain water, but they can also repair electrolyte imbalance, which helps your body stay hydrated. A perfect summer fruit choice is watermelon.
  • Avoiding caffeinated drinks: Though coffee and tea provide water, caffeine is considered a diuretic and simultaneously causes increased urination, which can lead to dehydration.
  • Exercising: Though this may seem counterintuitive, exercise increases circulation throughout the body, which improves electrolyte levels. When exercising make sure to drink extra water to supplement the amount you’re losing through perspiration.

How much water should I drink per day? 

3 Liters (or 13 cups) 

minimum drinking water, for men

2.2. Liters (or 9 cups)

minimum drinking water, for women

  • The Institute of Medicine (IOM) suggests 3.7 liters and 2.7 liters are the minimum intake for food and beverages combined for men and women, respectively. The actual amount of water you should drink per day depends on your activities and the weather. Another approach that's recommended is that you drink 25-50% of your body weight in ounces of water daily. If you’re active, pregnant or breastfeeding, or if it is very warm outside, you’ll want to drink more than usual.
  •  As you’re consuming extra water this summer to stay hydrated, it is important to ensure that your tap water is great quality. We at SimpleWater have developed various water testing kits to make sure you understand your water quality and its impact on your health. Feel free to email us at hello@simplewater.us with any questions.

Sources:

https://www.webmd.com/food-recipes/features/top-10-ways-to-stay-hydrated
http://www.heart.org/HEARTORG/HealthyLiving/PhysicalActivity/FitnessBasics/Staying-Hydrated---Staying-Healthy_UCM_441180_Article.jsp#.WwdZzC-ZNmA
https://www.health.harvard.edu/staying-healthy/the-importance-of-staying-hydrated
https://draxe.com/how-to-stay-hydrated/ 

Why Is My RO Water Filter Leaking?

Do you have a reverse osmosis (RO) water treatment system? Is it not working properly? This is an article to help you determine why your drinking water filter is leaking and what you can do to fix your RO. 

Leaky_Filters_1024x1024.png

If you own and maintain a reverse osmosis water treatment system in your home, then you’re probably already aware that things sometimes go awry. The water quality engineers at SimpleWater have pulled together a helpful list of the most common problems people have with their Reverse Osmosis water filters at home along with the most common solutions.

Reverse Osmosis: Problems, Solutions – A Quick Guide

Scan the headlines below for common symptoms, causes, and solutions to water filter failures. If you have questions about your water quality or your water treatment system, please don’t hesitate to reach out to our professional water testing team.

Scale forming on the membrane?

Cause: Failure of the antiscalant, acid dosing device, or pH monitor

Fix: Check your dosing equipment is working properly and monitor all changes in water quality before and after the RO system. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.

Iron accumulation on the filters and membranes?

(Leading to a high pressure difference and low permeate flow)

Cause: High iron content in raw water, corroding pipes, failure of media filters

Fix: Check pipes and media filters. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.

Bacterial film on filters and membranes?

(Leading to high pressure difference and low permeate flow)

Cause: Ineffective sanitization or biocide

Fix:  Sanitize all filters, perform microbiological analysis, check chemical dosing tanks; heck for biocide adsorption on carbon filters, check contact times and dose rates, select broad-spectrum biocide for organic content. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.

Organic or humic content on filters and membranes?

Cause: High organic content

Fix: Test the feed water for TOC and color Ask our team for help by emailing: hello@simplewater.usor clicking on our help page.

Membrane damage leading to high salts passthrough and high flux?

Cause: Chlorine overdosing

Fix: Perform chlorine tests, check dosing equipment, redox meters, bisulfite levels and the general location of dosing equipment. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.

High Salt Passthrough?

Cause: Failure of the O-ring at the permeate tube

Fix: Check conductivity in each vessel and membrane. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.

Bacteria and colloid fouling of micron-pre filters and membranes

Cause: Breakthrough of your media pre-filter

Fix: Wash your media pre-filters and add some biocide. Ask our team for help by emailing: hello@simplewater.us or clicking on our help page.



| HOME | GET TAP SCORE | CONTACT US | FOR THE PRESS |